My blog; no-one else's

Month: March 2021

Cisco password type 7 Vigenère cipher seed/keyword

If you were ever wondering what the seed (keyword) is for Cisco’s password encryption type 7 (which uses the Vigenère cipher), in ASCII it’s:


or in hex:

0x64, 0x73, 0x66, 0x64, 0x3b, 0x6b, 0x66, 0x6f, 0x41, 0x2c, 0x2e,
0x69, 0x79, 0x65, 0x77, 0x72, 0x6b, 0x6c, 0x64, 0x4a, 0x4b, 0x44,
0x48, 0x53, 0x55, 0x42, 0x73, 0x67, 0x76, 0x63, 0x61, 0x36, 0x39,
0x38, 0x33, 0x34, 0x6e, 0x63, 0x78, 0x76, 0x39, 0x38, 0x37, 0x33,
0x32, 0x35, 0x34, 0x6b, 0x3b, 0x66, 0x67, 0x38, 0x37

Private vLANs

Having just implemented private vLANs on a Cisco 3750X switch I thought I’d share some findings.

A private vLAN configuration consists of a primary vLAN, zero or one isolated vLANs, and zero or more community vLANs.

When associated with each other, primary, isolated and community vLANs limit the switch’s forwarding scope for frames.

For a normal vLAN the forwarding scope comprises all ports to which that vLAN is assigned.

For a pvLAN the scope changes:

  • the primary vLAN is a normal vLAN with a normal scope; frames are forwarded to any or all ports to which the primary vLAN is assigned
  • an isolated vLAN is a point-to-multipoint topology, much like the Frame Relay NBMA, where the scope is limited to a single port to which the isolated vLAN is assigned and all associated primary vLAN ports
  • a community vLAN’s scope is a hybrid of that of primary and isolated vLANs; it comprises all ports to which the community vLAN is assigned and all associated primary vLAN ports

Treatment of broadcast and unknown destination frames received on a given port is as follows:

  • primary vLAN: frames are forwarded to:
    • all other ports in the primary vLAN, all ports in the isolated vLAN, and all ports in all community vLANs
  • isolated vLAN: frames are forward to:
    • all ports in the primary vLAN, while having their vLAN translated to the primary vLAN number
  • community vLANs: frames are forwarded to:
    • all ports in the same community vLAN and all ports in the primary vLAN, again having their vLAN translated to the primary vLAN number

Another way to look at private vLANs is that they provide vLAN translation on ports depending on which way frames are flowing:

PrimaryNo translationP->IP->C
IsolatedI->PNot permittedNot permitted
CommunityC->PNot permittedNo translation
pvLAN translation

You can see that ports, regardless of their assigned pvLAN type, receive frames with their own vLAN id.

An interesting consideration with pvLANs is with layer 3 SVIs and pvLAN trunks with a router connected. If there is no IP ACL on the SVI/router port denying such traffic, any host, regardless of the vLAN type assigned to its port, can reach any other host in the same private vLAN configuration, simply by creating a static ARP entry where the destination host’s IP is mapped to the SVI/router port’s MAC address.

This is because any host can reach a router on a primary vLAN (using its MAC address), which then is able to reach any other host within the pvLAN.

© 2024 Scott's Blog

Theme by Anders NorenUp ↑